GraphToolbox

GraphToolbox is a Python package designed for graph machine learning focused on electricity load forecasting. It provides tools for data handling, model building, training, evaluation, and visualization.

Features

  • Data handling and preprocessing for graph datasets.

  • Various graph neural network models including Graph Convolutional Networks (GCNs), GraphSAGE, and Graph Attention Networks (GATs).

  • Training and evaluation utilities for graph-based models.

  • Visualization tools for graph data and model results.

Installation

Clone the repository and install the package and dependencies:

git clone git@github.com:eloicampagne/GraphToolbox.git
cd GraphToolbox
pip install .

Usage

Basic example of how to use GraphToolbox:

from graphtoolbox.data.dataset import *
from graphtoolbox.training.trainer import Trainer
from graphtoolbox.utils.helper_functions import *
from torch_geometric.nn.models import *

# Load datasets
out_channels = 48
data = DataClass(path_train='./train.csv',
                 path_test='./test.csv',
                 data_kwargs=data_kwargs,
                 folder_config='.')

graph_dataset_train = GraphDataset(data=data, period='train',
                                   graph_folder='../graph_representations',
                                   dataset_kwargs=dataset_kwargs,
                                   out_channels=out_channels)
graph_dataset_val = GraphDataset(data=data, period='val',
                                 scalers_feat=graph_dataset_train.scalers_feat,
                                 scalers_target=graph_dataset_train.scalers_target,
                                 graph_folder='../graph_representations',
                                 dataset_kwargs=dataset_kwargs,
                                 out_channels=out_channels)
graph_dataset_test = GraphDataset(data=data, period='test',
                                  scalers_feat=graph_dataset_train.scalers_feat,
                                  scalers_target=graph_dataset_train.scalers_target,
                                  graph_folder='../graph_representations',
                                  dataset_kwargs=dataset_kwargs,
                                  out_channels=out_channels)

# Initialize model
conv_class = GATConv
conv_kwargs = {'heads': 2}
params = {'num_layers': 3,
          'hidden_channels': 364,
          'lr': 1e-3,
          'batch_size': 16,
          'adj_matrix': 'gl3sr',
          'lam_reg': 0}

model = myGNN(
    in_channels=graph_dataset_train.num_node_features,
    num_layers=params["num_layers"],
    hidden_channels=params["hidden_channels"],
    out_channels=out_channels,
    conv_class=conv_class,
    conv_kwargs=conv_kwargs
)

# Initialize trainer
trainer = Trainer(
    model=model,
    dataset_train=graph_dataset_train,
    dataset_val=graph_dataset_val,
    dataset_test=graph_dataset_test,
    batch_size=params["batch_size"],
    return_attention=False,
    model_kwargs={'lr': params["lr"], 'num_epochs': 200},
    lam_reg=params["lam_reg"]
)

# Train model
pred_model_test, target_test, edge_index, attention_weights = trainer.train(
    plot_loss=True,
    force_training=True,
    save=False,
    patience=75
)

# Evaluate model
trainer.evaluate()

Contributing

Contributions are welcome! Please fork the repository and submit a pull request.

Special thanks to all contributors of the GraphToolbox project:

  • Eloi Campagne

  • Itai Zehavi

License

This project is licensed under the GPL License — see the LICENSE file for details.

Documentation